Variation in hydrogen peroxide sensitivity between different strains of Neisseria gonorrhoeae is dependent on factors in addition to catalase activity.
نویسندگان
چکیده
Catalase, which catalyzes the reduction of hydrogen peroxide to oxygen and water, is considered the primary defense of Neisseria gonorrhoeae against exogenous hydrogen peroxide. Recent reports have demonstrated drastically different sensitivities of the organism to hydrogen peroxide ranging from greater than 80% survival after challenge with 30 mM hydrogen peroxide to less than 0.001% survival after challenge with 10 mM hydrogen peroxide. In this study, we have examined the hydrogen peroxide sensitivities of six clinical gonococcal isolates. The study demonstrates that the variations in gonococcal hydrogen peroxide sensitivities previously reported can be attributed to (i) differences in experimental methods employed or (ii) variation among different gonococcal strains. All of the gonococcal isolates examined generated similar concentrations of catalase, implying that the differences in the H2O2 sensitivity observed may depend on factors in addition to catalase.
منابع مشابه
OxyR acts as a repressor of catalase expression in Neisseria gonorrhoeae.
It has been reported that Neisseria gonorrhoeae possesses a very high level of catalase activity, but the regulation of catalase expression has not been investigated extensively. In Escherichia coli and Salmonella enterica serovar Typhimurium, it has been demonstrated that OxyR is a positive regulator of hydrogen peroxide-inducible genes, including the gene encoding catalase. The oxyR gene from...
متن کاملA study on the frequency of vaginal species of Mycoplasma genitalium, Gardnerella vaginalis and Neisseria gonorrhoeae among pregnant women by PCR technique
Bacterial vaginosis or non-specific vaginitis describes the disease caused by a change in the normal Flora of the vagina, which leads to the elimination of Lactobacilli, generating hydrogen peroxide and excess growth of bacteria, particularly anaerobic bacteria. This disease is the most prevalent infection of the female genital tract, and the rate of frequency of anaerobic bacteria, specificall...
متن کاملPhase Variation Leads to the Misidentification of a Neisseria Gonorrhoeae Virulence Gene
Neisseria gonorrhoeae is the causative agent of gonorrhea and an obligate pathogen of humans. The Opa proteins of these bacteria are known to mediate attachment and internalization by host cells, including neutrophils. The Opa protein repertoire of a typical N. gonorrhoeae isolate is encoded on ~11 genes distributed throughout the chromosome and is subject to stochastic changes in expression th...
متن کاملPresence of hydrogen peroxide in media used for cultivation of Neisseria gonorrhoeae.
Defined complex media used for cultivation of Neisseria gonorrhoeae were tested for the presence of H2O2 by both a spectrophotometric and a polarographic assay. H2O2 (35 to 165 microM) was present in all media tested. In the defined media, H2O2 was generated by the interaction of cysteine with other amino acids. The addition of the chelator 8-hydroxyquinoline prevented formation of detectable H...
متن کاملNeisseria gonorrhoeae catalase is not required for experimental genital tract infection despite the induction of a localized neutrophil response.
Neisseria gonorrhoeae produces several antioxidant defenses, including high levels of catalase, which may facilitate the persistence during an inflammatory response via neutralization of H2O2 produced by phagocytes. In vivo testing of the role of catalase in gonococcal survival is critical since several physiological factors impact interactions between N. gonorrhoeae and polymorphonuclear leuko...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 62 5 شماره
صفحات -
تاریخ انتشار 1994